Profinite Groups

نویسنده

  • Hendrik Lenstra
چکیده

γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it must have a solution modulo p for all n: to prove it does not have a solution, therefore, it suffices to show that it does not have a solution in Zp for some prime p. We can express the expansion of elements in Zp as Zp = lim ←− n Z/pZ

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology of Profinite Groups

The aim of this thesis is to study profinite groups of type FPn. These are groups G which admit a projective resolution P of Ẑ as a ẐJGK-module such that P0, . . . , Pn are finitely generated, so this property can be studied using the tools of profinite group cohomology. In studying profinite groups it is often useful to consider their cohomology groups with profinite coefficients, but pre-exis...

متن کامل

Frobenius Subgroups of Free Profinite Products

We solve an open problem of Herfort and Ribes: Profinite Frobenius groups of certain type do occur as closed subgroups of free profinite products of two profinite groups. This also solves a question of Pop about prosolvable subgroups of free profinite products.

متن کامل

Continuous Cohomology of Permutation Groups on Profinite Modules

We investigate the continuous cohomology of infinite permutation groups on modules whose topology is profinite. To obtain acyclics we expand the class of modules to include those which are directed unions of their profinite submodules. As an application we give a criterion which implies finiteness of the continuous cohomology groups on finitely generated profinite modules for some familiar perm...

متن کامل

The Geometry of Profinite Graphs with Applications to Free Groups and Finite Monoids

We initiate the study of the class of profinite graphs Γ defined by the following geometric property: for any two vertices v and w of Γ, there is a (unique) smallest connected profinite subgraph of Γ containing them; such graphs are called tree-like. Profinite trees in the sense of Gildenhuys and Ribes are tree-like, but the converse is not true. A profinite group is then said to be dendral if ...

متن کامل

Profinite Homotopy Theory

We construct a model structure on simplicial profinite sets such that the homotopy groups carry a natural profinite structure. This yields a rigid profinite completion functor for spaces and pro-spaces. One motivation is the étale homotopy theory of schemes in which higher profinite étale homotopy groups fit well with the étale fundamental group which is always profinite. We show that the profi...

متن کامل

Profinite groups, profinite completions and a conjecture of Moore

Let R be any ring (with 1), Γ a group and RΓ the corresponding group ring. Let H be a subgroup of Γ of finite index. Let M be an RΓ−module, whose restriction to RH is projective. Moore’s conjecture [5]: Assume for every nontrivial element x in Γ, at least one of the following two conditions holds: M1) 〈x〉 ∩ H 6= {e} (in particular this holds if Γ is torsion free) M2) ord(x) is finite and invert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003